Von Petra Meyer

Voraussichtliche Lesedauer: 2 Minuten

Techblog

DeepDive: Multi-Agent Reinforcement Learning

Jorrit Posor schreibt in unserem Bereich Data Science und Machine Learning über Multi-Agent Reinforcement Learning. Dahinter verbirgt sich das Problem, wie die Aktionen von mehreren Akteuren aufeinander abgestimmt werden können. Im Video zeigt Jorrit das sehr plastisch am Beispiel einer verteilten Taxiflotte, die – von ihren verschiedenen Standorten aus – Fahrgäste an verschiedenen Plätzen abholen […]

Techblog

Übersicht

Jorrit Posor schreibt in unserem Bereich Data Science und Machine Learning über Multi-Agent Reinforcement Learning. Dahinter verbirgt sich das Problem, wie die Aktionen von mehreren Akteuren aufeinander abgestimmt werden können.

Im Video zeigt Jorrit das sehr plastisch am Beispiel einer verteilten Taxiflotte, die – von ihren verschiedenen Standorten aus – Fahrgäste an verschiedenen Plätzen abholen sollen.

Das skaliert das klassische Optimierungsproblem: Auf viele Agenten verteiles Entscheiden und Koordinieren ist skalierbarer als zentrales Entscheiden ohne Koordination. Machine Learning ermöglicht die statistische Generalisierung ähnlicher Situationen, was einen weiteren Skalierbarkeitsfaktor mit sich bringt. So werden größere und komplexere Szenarien handhabbar.

Im Video erfährst Du, wie Muti-Agent Reinforcement Learning das Problem löst.

https://youtu.be/SIWuoiiV1jY

Über den Autor

Von Petra Meyer