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| bet Apple regrets neglecting to
annotate @clattner_llvm noescape.

— Daniel Jalkut (@danielpunkass)



(Very) Quick History Lesson

Jul/10 - Internal Development at Apple
WWDC14 - Public unveiling

Sep/14 - Swift 1.0

Sep/15 - Swift 2.0 (try/catch, guard, defer)
Dec/15 - Swift Open-Source “.

Sep/16 - Swift 3.0 (Swifty API)



Our goal for Swift has always been
for it to take over the world.

— Chris Lattner (Tesla Motors, Inc.)



Swift 3.1 (Spring 2017)



New Sequence Methods (3.1)

[12, 30, 5, 117].dropLast()

g

[12, 30, 5, 11].drop(while: { $0 > 10 })

[12, 30, 5, 11].prefix(while: { $0 > 10 })

Confidence: V



New API Annotations (3.1)

@available(iOS 10.0, *)

~—

NEW

@avallable(swift 3)
@avallable(swift, introduced: 3)
@availlable(swift, obsoleted: 3.1)

Confidence: VvV



New Numeric Initializers (3.1)

Let integer Int(3.9)

NEW

Let integer = Int(exactly: 3.9)

Llet integer = Int(exactly: 3.0)

Confidence:



Protocol-oriented integers (3.1)

Llet firstInteger = Int38(42), secondInteger = 4
if firstInteger > secondInteger {}
let firstInteger = Int8(42), secondInteger = 4

if firstInteger > secondInteger {}

Confidence:
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Swift 4 (Late 2017)



Swift 4 (Late 2017)

Stabilization of the ABI

e Usage of frameworks not compiled for your Swift version
Improved compile time, compiler reliability, and error messages
New generics features needed by standard library

Standard library APl improvements, e.g. String
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Memory Ownership Model (4.0)

e Opt-in memory ownership typing for references
e Fast: Unique ownership guarantees no ARC
o Safe: Correctness is enforced statically »-

e Type system enhancements
e owned: Have responsibility for value

e borrowed: Just using it temporarily
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Memory Ownership Model (4.0)

e Low burden, but still more than most users care about
e Aiming at users who want C++ level performance

e Everyone else should be able to ighore it
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Memory Ownership Model (4.0)

Potential syntax:

extension {
func - -> T) -> [T] {
var result = [T]()
for element in self {
result.append(f(element))

3

return result

b

Confidence: V
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Swift 5 (2018)



Swift 5 (2018)

Tackling Task Concurrency
Goal: Start discussions in Spring/Summer 2017
Aim to have a “manifesto” design sketch by Fall 2017

First deliverables in Swift 5
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Task Concurrency (5.0)

e async/await for elegant async operations
 Native concurrency at language level
* Solves completion handler ,pyramid of doom®”
e C#, Javascript, Python, Kotlin etc.

Confidence: VvV
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Task Concurrency (5.0)

Potential syntax:

async func -> Task<UIImage?> {
do {
Let dataTask: Task<Data> = URLSession.shared.dataTask(with: url)
Let data: Data = try await dataTask
return ULImage(data: data)
} catch {
return nil

3
3

Let image: UILImage? = await downloadImage(from: url)
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Actor Model (5.0)

e Actor model to define tasks, along with managed state
e Each Actor is effectively

e ADispatchQueue

e State it manages

e Operations that act on it

e Erlang, Akka (JVM)
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Actor Model (5.0)

Potential syntax:

actor NetworkRequestHandler {
private var userlD: UserID

async func

b

Llet requestHandler = NetworkRequestHandler()
awalt requestHandler.processRequest(connection)
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Actor Model (5.0)

o Better reliability model

» Terminate failing Actor instead of entire process *°

e All awaits on an Actor’s method throw an error
e Enables custom failure recovery
e Runtime cleans up resources owned by that Actor

Confidence:
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Cycle Collector (5.0)

Commonly requested, technically feasible to implement

e But: Thinking (a little bit) about memory is good!
“Leaks” are possible with any memory management model
Code is read/maintained far more than it is written

ARC provides an explicit model for memory management

e weak, unowned
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Cycle Collector (5.0)

e Availability of a cycle collector would partition the community
e Some packages would rely on it, some would not

e |f on by default, almost everything would rely on it

)
NEW

o Automatically suggest weak in the right places

Confidence:
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Not gonna happen =



Tracing Garbage Collection

Drawbacks
 Native interoperability with unmanaged code

e Possible but would introduce significant complexity (JNI)
e Non-deterministic object destruction

e ARC gets you deterministic destruction of objects

e Eliminates “finalizers” as a concept (resurrection, threading)
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Tracing Garbage Collection

Drawbacks
e Performance
e May run at unfortunate times (stutter)

e Uses ~3-4x more memory than ARC to achieve good
performance

e Memory usage is very important for mobile and cloud apps
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func

Open-Source Anarchy

?) -> String?
unless input != nil
fatalError(“No input™)
Let intInput: Int? = Int(input)

if let intInput =7
return if intInput % 2 ==

else

else
return nil
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Thank you

patrick.gaissert@maibornwolff.de
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