The Future of

The Future of

Swift @8

| bet Apple regrets neglecting to
annotate @clattner_llvm noescape.

— Daniel Jalkut (@danielpunkass)

(Very) Quick History Lesson

Jul/10 - Internal Development at Apple
WWDC14 - Public unveiling

Sep/14 - Swift 1.0

Sep/15 - Swift 2.0 (try/catch, guard, defer)
Dec/15 - Swift Open-Source “.

Sep/16 - Swift 3.0 (Swifty API)

Our goal for Swift has always been
for it to take over the world.

— Chris Lattner (Tesla Motors, Inc.)

Swift 3.1 (Spring 2017)

New Sequence Methods (3.1)

[12, 30, 5, 117].dropLast()

g

[12, 30, 5, 11].drop(while: { $0 > 10 })

[12, 30, 5, 11].prefix(while: { $0 > 10 })

Confidence: V

New API Annotations (3.1)

@available(iOS 10.0, *)

~—

NEW

@avallable(swift 3)
@avallable(swift, introduced: 3)
@availlable(swift, obsoleted: 3.1)

Confidence: VvV

New Numeric Initializers (3.1)

Let integer Int(3.9)

NEW

Let integer = Int(exactly: 3.9)

Llet integer = Int(exactly: 3.0)

Confidence:

Protocol-oriented integers (3.1)

Llet firstInteger = Int38(42), secondInteger = 4
if firstInteger > secondInteger {}
let firstInteger = Int8(42), secondInteger = 4

if firstInteger > secondInteger {}

Confidence:

10

Swift 4 (Late 2017)

Swift 4 (Late 2017)

Stabilization of the ABI

e Usage of frameworks not compiled for your Swift version
Improved compile time, compiler reliability, and error messages
New generics features needed by standard library

Standard library APl improvements, e.g. String

12

Memory Ownership Model (4.0)

e Opt-in memory ownership typing for references
e Fast: Unique ownership guarantees no ARC
o Safe: Correctness is enforced statically »-

e Type system enhancements
e owned: Have responsibility for value

e borrowed: Just using it temporarily

13

Memory Ownership Model (4.0)

e Low burden, but still more than most users care about
e Aiming at users who want C++ level performance

e Everyone else should be able to ighore it

14

Memory Ownership Model (4.0)

Potential syntax:

extension {
func - -> T) -> [T] {
var result = [T]()
for element in self {
result.append(f(element))

3

return result

b

Confidence: V

15

Swift 5 (2018)

Swift 5 (2018)

Tackling Task Concurrency
Goal: Start discussions in Spring/Summer 2017
Aim to have a “manifesto” design sketch by Fall 2017

First deliverables in Swift 5

17

Task Concurrency (5.0)

e async/await for elegant async operations
 Native concurrency at language level
* Solves completion handler ,pyramid of doom®”
e C#, Javascript, Python, Kotlin etc.

Confidence: VvV

18

Task Concurrency (5.0)

Potential syntax:

async func -> Task<UIImage?> {
do {
Let dataTask: Task<Data> = URLSession.shared.dataTask(with: url)
Let data: Data = try await dataTask
return ULImage(data: data)
} catch {
return nil

3
3

Let image: UILImage? = await downloadImage(from: url)

19

Actor Model (5.0)

e Actor model to define tasks, along with managed state
e Each Actor is effectively

e ADispatchQueue

e State it manages

e Operations that act on it

e Erlang, Akka (JVM)

20

Actor Model (5.0)

Potential syntax:

actor NetworkRequestHandler {
private var userlD: UserID

async func

b

Llet requestHandler = NetworkRequestHandler()
awalt requestHandler.processRequest(connection)

21

Actor Model (5.0)

o Better reliability model

» Terminate failing Actor instead of entire process *°

e All awaits on an Actor’s method throw an error
e Enables custom failure recovery
e Runtime cleans up resources owned by that Actor

Confidence:

22

Cycle Collector (5.0)

Commonly requested, technically feasible to implement

e But: Thinking (a little bit) about memory is good!
“Leaks” are possible with any memory management model
Code is read/maintained far more than it is written

ARC provides an explicit model for memory management

e weak, unowned

23

Cycle Collector (5.0)

e Availability of a cycle collector would partition the community
e Some packages would rely on it, some would not

e |f on by default, almost everything would rely on it

)
NEW

o Automatically suggest weak in the right places

Confidence:

24

Not gonna happen =

Tracing Garbage Collection

Drawbacks
 Native interoperability with unmanaged code

e Possible but would introduce significant complexity (JNI)
e Non-deterministic object destruction

e ARC gets you deterministic destruction of objects

e Eliminates “finalizers” as a concept (resurrection, threading)

26

Tracing Garbage Collection

Drawbacks
e Performance
e May run at unfortunate times (stutter)

e Uses ~3-4x more memory than ARC to achieve good
performance

e Memory usage is very important for mobile and cloud apps

27

func

Open-Source Anarchy

?) -> String?
unless input != nil
fatalError(“No input™)
Let intInput: Int? = Int(input)

if let intInput =7
return if intInput % 2 ==

else

else
return nil

28

Thank you

patrick.gaissert@maibornwolff.de

29

