
The Future of

Swi$
1

The Future of

Swi$!
2

I bet Apple regrets neglec.ng to

annotate @cla2ner_llvm noescape.

— Daniel Jalkut (@danielpunkass)

3

(Very) Quick History Lesson

• Jul/10 - Internal Development at Apple

• WWDC14 - Public unveiling

• Sep/14 - Swi@ 1.0

• Sep/15 - Swi@ 2.0 (try/catch, guard, defer)

• Dec/15 - Swi@ Open-Source !

• Sep/16 - Swi@ 3.0 (Swi4y API)

4

Our goal for Swi- has always been

for it to take over the world.

— Chris La*ner (Tesla Motors, Inc.)

5

Swi$ 3.1 (Spring 2017)

6

New Sequence Methods (3.1)

// dropLast()

[12, 30, 5, 11].dropLast()

// [12, 30, 5]

!

// drop(while:)

[12, 30, 5, 11].drop(while: { $0 > 10 })

// [5, 11]

// prefix(while:)

[12, 30, 5, 11].prefix(while: { $0 > 10 })

// [12, 30]

Confidence: ✅

7

New API Annota,ons (3.1)

// Relative to OS version

@available(iOS 10.0, *)

!

// Relative to Swift version

@available(swift 3)

@available(swift, introduced: 3)

@available(swift, obsoleted: 3.1)

Confidence: ✅

8

New Numeric Ini,alizers (3.1)

// Rounding errors

let integer = Int(3.9)

// integer: 3

!

// Failing initializers

let integer = Int(exactly: 3.9)

// integer: nil

let integer = Int(exactly: 3.0)

// integer: 3

Confidence: !

9

Protocol-oriented integers (3.1)

// Compare error

let firstInteger = Int8(42), secondInteger = 4

if firstInteger > secondInteger {}

// error: binary operator '>' cannot be applied to operands of type 'Int8' and 'Int'

!

// Works now

let firstInteger = Int8(42), secondInteger = 4

if firstInteger > secondInteger {}

// true

Confidence: !

10

Swi$ 4 (Late 2017)

11

Swi$ 4 (Late 2017)

• Stabiliza)on of the ABI

• Usage of frameworks not compiled for your Swi? version

• Improved compile)me, compiler reliability, and error messages

• New generics features needed by standard library

• Standard library API improvements, e.g. String

12

Memory Ownership Model (4.0)

• Opt-in memory ownership typing for references

• Fast: Unique ownership guarantees no ARC !

• Safe: Correctness is enforced sta?cally "

• Type system enhancements

• owned: Have responsibility for value

• borrowed: Just using it temporarily

13

Memory Ownership Model (4.0)

• Low burden, but s/ll more than most users care about

• Aiming at users who want C++ level performance

• Everyone else should be able to ignore it

14

Memory Ownership Model (4.0)

Poten&al syntax:

extension Collection {

 func map<T>(_ f: (borrowed Element) -> T) -> [T] {

 var result = [T]()

 for element in self {

 result.append(f(element))

 }

 return result

 }

}

Confidence: ✅

15

Swi$ 5 (2018)

16

Swi$ 5 (2018)

• Tackling Task Concurrency

• Goal: Start discussions in Spring/Summer 2017

• Aim to have a “manifesto” design sketch by Fall 2017

• First deliverables in SwiG 5

17

Task Concurrency (5.0)

• async/await for elegant async opera1ons

• Na1ve concurrency at language level

• Solves comple1on handler „pyramid of doom“

• C#, Javascript, Python, Kotlin etc.

Confidence: ✅

18

Task Concurrency (5.0)

Poten&al syntax:

async func downloadImage(from url: URL) -> Task<UIImage?> {

 do {

 let dataTask: Task<Data> = URLSession.shared.dataTask(with: url)

 let data: Data = try await dataTask

 return UIImage(data: data)

 } catch {

 return nil

 }

}

let image: UIImage? = await downloadImage(from: url)

19

Actor Model (5.0)

• Actor model to define tasks, along with managed state

• Each Actor is effec8vely

• A DispatchQueue

• State it manages

• Opera8ons that act on it

• Erlang, Akka (JVM)

20

Actor Model (5.0)

Poten&al syntax:

actor NetworkRequestHandler {

 private var userID: UserID

 async func processRequest(_ connection: Connection) {

 // send messages to other actors

 // create new actors

 // modify local state

 }

}

let requestHandler = NetworkRequestHandler()

await requestHandler.processRequest(connection)

21

Actor Model (5.0)

• Be$er reliability model

• Terminate failing Actor instead of en7re process !

• All awaits on an Actor’s method throw an error

• Enables custom failure recovery

• Run7me cleans up resources owned by that Actor

Confidence: !

22

Cycle Collector (5.0)

• Commonly requested, technically feasible to implement

• But: Thinking (a li>le bit) about memory is good!

• “Leaks” are possible with any memory management model

• Code is read/maintained far more than it is wri>en

• ARC provides an explicit model for memory management

• weak, unowned

23

Cycle Collector (5.0)

• Availability of a cycle collector would par44on the community

• Some packages would rely on it, some would not

• If on by default, almost everything would rely on it

!

• Automa(cally suggest weak in the right places

Confidence: !

24

Not gonna happen ⛔

25

Tracing Garbage Collec/on

Drawbacks

• Na$ve interoperability with unmanaged code

• Possible but would introduce significant complexity (JNI)

• Non-determinis$c object destruc$on

• ARC gets you determinis$c destruc$on of objects

• Eliminates “finalizers” as a concept (resurrec$on, threading)

26

Tracing Garbage Collec/on

Drawbacks

• Performance

• May run at unfortunate 0mes (stu3er)

• Uses ~3-4x more memory than ARC to achieve good

performance

• Memory usage is very important for mobile and cloud apps

27

Open-Source Anarchy

func parse(input: (Int | String)?) -> String?

 unless input != nil

 fatalError(“No input“)

 let intInput: Int? = Int(input)

 if let intInput =?

 return if intInput % 2 == 0

 "x is even"

 else

 "x is odd"

 else

 return nil

28

Thank you

patrick.gaissert@maibornwolff.de

29

